developer\Vorks.

Use your singletons wisely

Know when to use singletons, and when to leave them behind

J.B. Rainsberger July 01, 2001

Are singletons overused? Veteran programmer J. B. Rainsberger suggests they might be,
explains why, and offers tips for knowing when to use singletons and when to seek more
flexible alternatives.

The programming community discourages using global data and objects. Still, there are times
when an application needs a single instance of a given class and a global point of access to that
class. The general solution is the design pattern known as singletons. However, singletons are
unnecessarily difficult to test and may make strong assumptions about the applications that will
use them. In this article | discuss strategies for avoiding the singleton pattern for that majority of
cases where it is not appropriate. | also describe the properties of some classes that are truly
singletons.

Automated unit testing is most effective when:

» Coupling between classes is only as strong as it needs to be
* Itis simple to use mock implementations of collaborating classes in place of production
implementations

Certainly, when classes are loosely coupled, it is possible to concentrate on testing a single class
independently. When classes are tightly coupled, it is possible only to test a group of classes
together, making bugs more difficult to isolate. Generally speaking, testing is easiest when classes
collaborate without assuming anything beyond their respective contracts.

Unit tests are meant to ensure that each class behaves as it claims: independently of the rest of
the system. One common technique for making unit tests more effective, and making them run
more quickly, is using mock objects in place of production implementations of collaborating objects.
For example, in order to test how class A responds when class B throws an exception, it suffices to
write something like the code in Listing 1.

© Copyright IBM Corporation 2001 Trademarks
Use your singletons wisely Page 1 of 7


http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

developerWorks® ibm.com/developerWorks/

Listing 1. Example code using mock objects
public class MyTestCase extends TestCase {

public void testBThrowsException() {
MockB b = new MockB();
b.throwExceptionFromMethodC(NoSuchElementException.class);

A a = new A(b); // Pass in the mock version

try {
a.doSomethingThatCallsMethodC();

catch (NoSuchElementException success) {
// Check exception parameters?
}

}

It is much simpler to simulate behavior than it is to recreate that behavior. Here, we simulate
method c() throwing a NoSuchElementException, rather than recreate the scenario under which
the production implementation of class B would do that. The simulation requires less specialized
knowledge of class B than recreating the scenario would.

Singletons know too much

There is one implementation anti-pattern that flourishes in an application with too many singletons:
the | know where you live anti-pattern. This occurs when, among collaborating classes, one class
knows where to get instances of the other.

Where's the harm? Coupling among classes is vastly increased when classes know where to get
instances of their collaborators. First, any change in how the supplier class is instantiated ripples
into the client class. This violates the Liskov Substitution Principle, which states that you should
allow any application the freedom to tell the client class to collaborate with any subclass of the
supplier. This violation is felt by unit tests, but more importantly, it makes it difficult to enhance the
supplier in a backward-compatible way. First, the unit tests cannot pass the client class a mock
supplier instance for the purposes of simulating the supplier's behavior, as described above. Next,
no one can enhance the supplier without changing the client code, which requires access to the
supplier's source. Even when you have access to the supplier's source, do you really want to
change all 178 clients of the supplier? Weren't you planning on having a nice, relaxing weekend?

Collaborating classes should be built to allow the application to decide how to wire them together.
This increases the flexibility of the application and makes unit testing simpler, faster, and generally
more effective. Remember that the easier it is to test a class, the more likely a developer will test it.

Moving away from singletons

Since singletons are not as desirable as you might first believe, I'll discuss how to code clients
effectively so they don't know that their supplier is a singleton.

I'll elaborate on the problem. Whenever a client retrieves a singleton's instance, that client
becomes unnecessarily coupled with the fact that its supplier is a singleton. As an example,

Use your singletons wisely Page 2 of 7



ibm.com/developerWorks/ developerWorks®

consider a beployer and a Deployment. The application only needs one beployer, SO we make it a
singleton. Now we can code this method, as shown Listing 2.

Listing 2. Coding Deployer
public class Deployment {
5&5110 void deploy(File targetFile) {

Deployer.getInstance().deploy(this, targetFile);
}

}

This looks like a good shortcut because the client can simply ask the beployment to deploy itself
-- the client is not responsible for knowing about beployers. Although this is true, the advantage
is soon outweighed by the consequences when we now have to (or want to) use a different kind
of beployer. Deployment knows about the concrete class beployer, SO we cannot substitute a
subclass of beployer without changing the source for beployment.

Rather than the peployment knowing that beployer is a singleton, clients should pass a beployer
instance to the beployment's constructor, as in Listing 3.

Listing 3. Passing Deployer to the Deployment's constructor

public class Deployment {
private Deployer deployer;

public Deployment(Deployer aDeployer) {
deployer = aDeployer;
}

public void deploy(File targetFile) {
deployer.deploy(this, targetFile);
}

The two classes are less tightly coupled: There is now a simple association from bDeployment to
Deployer, rather than a reliance on the way that beployers are created. You let the application
make that decision.

With the old code, the client must change; there can be no static methods on an interface. With the
new code, beployment need not change. Instead, beployment's client, the application, changes in a
way that makes sense for the application. Moreover, if the application is well designed, one change
will cause the behavior of all beployment instances in the application to change along with it. So
there's no problem next week -- or month, or year -- when you find out that beployer needs to be
an interface.

The unit tests also benefit. When it comes time to run multiple test cases, each test case may
need a slightly different beployer: Usually the beployer needs to be in a certain state, in order to
simulate a particular bit of its behavior. As we have already seen, the easiest way to achieve this is
to create mock beployer implementations. This test case code in Listing 4 illustrates this technique
well.

Use your singletons wisely Page 3 of 7



developerWorks® ibm.com/developerWorks/

Listing 4. Mock Deployer implementation

public class DeploymentTestCase extends TestCase {

public void testTargetFileDoesNotExist() {
MockDeployer deployer = new MockDeployer();
deployer.doNotFindAnyFiles();

try {
Deployment deployment = new Deployment(deployer);
deployment.deploy(new File("validLocation"));

catch (FileNotFoundException success) {

}
}

Here, we tell our mock beployer, "Do not find any files, no matter what file object | pass you."

We use this technique to simulate the case where the client attempts to deploy to a file in a
nonexistent folder, for example. You may wonder why you shouldn't just specify a silly file name to
actually create the exception condition, rather than simulate it. We're interested only in simulating
the exception condition, and not re-creating it -- doing the latter more easily leads to confusion.
Suppose a novice developer on your team chooses d:/doesNotExist as the test case's invalid
file location. She passes the tests on her machine and integrates her changes. Now you run the
tests on your machine, which just happens to have d:/doesNotExist on the filesystem: Maybe it's
left behind from a test case of yours that didn't tear itself down correctly. The test unexpectedly
fails, not because the code is wrong, but because the test depends too much on the environment
around it.

This wastes time. You spend 30 minutes isolating the cause of the problem, 15 minutes explaining
to the novice developer why d: /doesNotExist was a risky choice, and 20 minutes crafting a note to
the rest of the team, warning them against such coding practices. Of course, when someone new
joins the team, it will probably happen again. Writing a single mock deployer with a method called
doNotFindAnyFiles allows you to avoid such annoyances.

Aggregating singletons: the Toolbox

Singleton abuse can be avoided by looking at the problem from a different angle. Suppose an
application needs only one instance of a class and the application configures that class at startup:
Why should the class itself be responsible for being a singleton? It seems quite logical for the
application to take on this responsibility, since the application requires this kind of behavior. The
application, not the component, should be the singleton. The application then makes an instance
of the component available for any application-specific code to use. When an application uses
several such components, it can aggregate them into what we have called a toolbox.

Put simply, the application's toolbox is a singleton that is responsible either for configuring itself or
for allowing the application's startup mechanism to configure it. The general pattern of the Toolbox
singleton is as shown here:

Listing 5. General pattern of the Toolbox singleton
public class MyApplicationToolbox {

Use your singletons wisely Page 4 of 7



ibm.com/developerWorks/ developerWorks®

private static MyApplicationToolbox instance;

public static MyApplicationToolbox getInstance() {
if (instance == null) {
instance = new MyApplicationToolbox();
}

return instance;

}

protected MyApplicationToolbox() {
initialize();

}

protected void initialize() {
// Your code here

}
private AnyComponent anyComponent;

public AnyComponent getAnyComponent() {
return anyComponent();

}

// Optional: standard extension allowing
// runtime registration of global objects.
private Map components;

public Object getComponent(String componentName) {
return components.get(componentName);

}
public void registerComponent(String componentName, Object component)
{
components.put(componentName, component);
}
public void deregisterComponent(String componentName) {
components.remove(componentName);
}
}

The Toolbox is itself a singleton, and it manages the lifetime of the various component instances.
Either the application configures it, or it asks the application for configuration information in method
initialize. Now the application can decide how many instances of which classes it requires.
Changes in those decisions may affect application-specific code, but not reusable, infrastructure-
level code. Moreover, testing infrastructure code is much easier, as those classes do not rely on
the way in which any application may choose to use them.

When it really is a singleton
To decide whether a class is truly a singleton, you must ask yourself some questions.

» Will every application use this class exactly the same way? (exactly is the key word)

» Will every application ever need only one instance of this class? (ever and one are the key
words)

» Should the clients of this class be unaware of the application they are part of?

Use your singletons wisely Page 5 of 7



developerWorks® ibm.com/developerWorks/

If you answer yes to all three questions, then you've found a singleton. The key points here are
that a class is only a singleton if all applications treat it exactly the same and if its clients can use
the class without an application context.

A classic example of a true singleton is a logging service. Suppose we have an event-based
logging service: Client objects request that text be logged by sending a message to the logging
service. Other objects actually log the text somewhere (console, file, whatever) by listening to the
logging service for these logging requests and handling them. First, notice that the logging service
passes the classic test for being a singleton:

* The requesters need a well-known object to which to send requests to log. This means a
global point of access.

 Since the logging service is a single event source to which multiple listeners can register,
there only needs to be one instance.

The classic singleton design pattern requirements are met, but there's more:

Although different applications may log to different output devices, the way they register their
listeners is always the same. All customization is done through the listeners. Clients can
request logging without knowing how or where the text will be logged. Every application would
therefore use the logging service exactly the same way.

Any application should be able to get away with only one instance of the logging service.

Any object can be a logging requester, including reusable components, so that they should
not be coupled to any particular application.

In addition to the classic requirements, our above requirements are also met by the logging
service. We can safely implement the logging service as a singleton without concern that we may
later regret our choice.

Despite these rules, you should consider letting the code tell you when a class should be a
singleton. Once you identify an object that you can't quite figure out how to get your hands on,
you'll ask yourself:

» Where am | going to get an instance of this class?
» Does this object belong to the application or the component I'm writing?
» Can | write this class so that customization can be pushed back to its clients?

If you've gotten this far, then perhaps it really is a singleton, but once the code tells you that it
wants to use a subclass here, but not there, you need to reconsider your decision.

Don't worry: the code will always tell you what to do. Just listen.

Use your singletons wisely Page 6 of 7



ibm.com/developerWorks/ developerWorks®

Related topics

* A discussion on the Singleton Design Pattern. As always, don't be lured by hard-and-fast
rules that use words like "always" and "never." On the same site, you'll find a discussion of the
OnceAndOnlyOnce design principle, which takes as its starting point Kent Beck's suggestion
that "[c]ode wants to be simple.”

* Yahoo's Extreme Programming Group is full of discussions on how unit testing techniques
affect design, usually for the better. This was my primary motivation for moving away from
singletons where possible.

* The test cases in this article were implemented using the JUnit test framework. JUnit is

lightweight, simple, and powerful, making it the ideal test framework for both small and big
products.

© Copyright IBM Corporation 2001
(www.ibm.com/legal/copytrade.shtml)
Trademarks
(www.ibm.com/developerworks/ibm/trademarks/)

Use your singletons wisely Page 7 of 7


http://c2.com/cgi/wiki?SingletonPattern
http://c2.com/cgi/wiki?OnceAndOnlyOnce
http://groups.yahoo.com/group/extremeprogramming
http://www.junit.org
http://www.ibm.com/legal/copytrade.shtml
https://www.ibm.com/developerworks/ibm/trademarks/

	Table of Contents
	Singletons know too much
	Moving away from singletons
	Aggregating singletons: the Toolbox
	When it really is a singleton
	Trademarks

